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ARSTRACT: In this paper, we gvvp the mathematical modeling for walking
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pattern of biped robot. Biped robots have higher mobility than conventlonal wheeled
robots, but they tend to tip over easily. To be able to walk stably in various environments,
such as rough terrain, up and down slopes, or regions containing obstacles, we need to
control its stability and walking.

~ In order to maintain its stability. we can prevent from biped
robot’s tipping over and falling down. To prevent this, we need to control Center of Mass
(CoM) and Gravity of Center of Mass (GCoM) of biped robot, in the case of static
stability, and Zero Moment Point (ZMP) and Foot Rotation Indicator point (FRI) of it, in
the case of dynamic stability. By using applied mechanic, Zero Moment Point and
friction conditions at the feet ensuring postural stability of the biped, as well as bounds on
the joint angles and on the control torques, are treated as constraints.

The walking of biped robot can be determined by controlling foot
and hip trajectories. To construct mathematical modeling for these walking trajectories,
interpolation method which are based on Cubic polynomial and Cubic spline
interpolation is applied.

Keywords
Biped robot, stability, walking trajectory, Cubic polynomial, Cubic spline interpolation

1. INTRODUCTION

Biped robots have beiier mobilily ihan convenilonal wheeled robois, but they iend
to tip over easily. To be able to walk stably in various environments, such as on rough
terrain, up and down slopes, or in regions containing obstacles, we need to maintain its
stability and walking [10]. Among the several ways in which the static equilibrium of the
robot foot may be disturbed- such as pure sliding, pure rotation about a boundary point

ri1 v innnnmnnsr £ tha walhat tn adamt 44 tha orannd nanditinanae vnth o fant matinn and
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maintain its stability with a torso motion. When the ground conditions and stability
constraint are satisfied, it is desirable to select a walking pattern that requires small
torque and velocity of the joint actuators [10].

Hip and foot trajectories are discussed on one walking cycle. Mathematical
methods apnlied in this portion are first we formulate the constraint for positions of the
breakpoints of hip and foot trajectories on various ground conditions. Then cubic
polynomial and cubic spline interpolation method are applied to find the whole trajectory
of one walking cycle.

Biped robot motion in 3D space, X axis points t~ the forward direction, Z axis
points upward, and Y axis is cross product of the Z and X axis as shown in figure 1 [2].
The X-Z plane is the sagittal plane, X-Y plane is the transverse plane and Y-Z plane is




frontal plane. In this research, trajectories are discussed only in the sagittal plane as
shown in figure 2.

In this paper, we first briefly express about the general information for the
walking cycle of biped robot. Secondly, the constraints of a complete foot trajectories and
hip trajectory in various ground conditions are formulated Then, the walking trajectories
are generated by applying the cubic polynomial and cubic spline interpolation. Finally,

conditions for contact stability are presented.

f mea
x .
Fig.1. Biped Robot reference frames Fig. 2.Planes denomination
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2. WALKING CYCLE

We considered an anthropomorphic biped robot with a trunk. Each leg consists of
a thigh, a shin, and a foot, and has six degrees of freedom (DOF): three DOF in the hip
joint, one in the knee joint, and two in the ankle joint as shown in Figure 3.
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Fig.3. DOF of biped robot Fig.4. Walking phase,(a) single support

and (b) double support
Biped walking is a periodic phenomenon. A complete walking cycle is composed
of two phases. These two phases are double support phase and single support phase
shown in Figure 4. During the double support phase, both feet are in contact with the
ground. During the single support phase, while one foot is stationary with the ground,
the other foot swings from the rear foot to the front (swing).One walking cycle may be




classified into three phases. These are pre-swing phase, swing phase and post-swing
phase as shown in figure 5.

St - . D ~

dwblo support pra-swing swing posi-swing

Fig. 5. Phases of dynamic biped gait

For a sagittal- plane, each foot trajectory can be denoted by a vector
X, =[x,(0),z,).0,()]" ., where(x,(t),z,(t)) is the coordinate of the ankle position,
and®, (1) denotes the angle of the foot. The hip trajectory can be denoted by a
vector X, =[x, (1),z,(1).6,()]", where(x, (r).z,(r)) denotes the coordinate of the hip
position and &, (7)denotes the angle of the hip as shown in figure 6.

3. WALKING TRAJECTORIES
3.1. Foot Trajectories

Each foot trajectory can be denoted by a vector
Xodxoz,090),

2 U\Nrs7?

where (x,(¢),z,(f)) is the coordinate of the ankle position, and &,(f) denotes the angle
of the foot as shown in Figure 6.
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Fig. 6. Model of the biped robot Fig. 7. Walking parameters




To simplify our analysis, W€ define the one walking step. 118 defined as to begin
with the heel of the right foot leaving the ground and with the beel of the right foot
making first contact with the ground.

Assuming that the period necessary

or in environments with obstacles, it is necessary 1o i
H,) be the position of the highest po

point,

negotiate obstacies. Letting LE1

foot , D, is the length of one step- T, is the time when the right foot is at its highcst P

L1 the height of the foot, L is the length from the ankle joint to the toe, L, is the
e 8, hy (k)and hge(k) are the

length from the ankle joint to the heel shown in figur
heights of the ground surface which is under the support foot. Letting ¢, andg, be the
designated angles of the right foot as it leaves and lands on the ground respectively as

shown in figure 7.
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Fig.8. fvot parameters

the right foot is in contact
trajectory for one walkin

with the ground

Assuming that entire sole surface of
at t=0andr =T + T,. The breakpoints of foot g step on various

ground conditions are described by following:
0

L, sin(g;)+ Ly cos(1—c0s(g5))-
x, ()= ie T,
2P, — L., sin(g )+ L, cos(l— cos(q ;) ial,
2D, i
h,, (k)+ Ly»
h,, (k)+ Ly sin(g,) + . cos(q,)s
H,»
h (k) + La sin(g ;) + Lan €08 )
h, (k) + 4

(1)
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g
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(g (k). t=0
Ure t=T, g é
qf’ t=Tc - ‘
qge(k), t=T.+T,

0,(t=




where 7, is the interval of the double-support phase, 9 (k)andq,, (k) are the angles of
the ground surface under the support foot. Above constraints of time interval for one
walking cycle are classified into three walking phases as following.

D). Pre-Swing -Phase (r1€[0,2,)): : The one walking cycle of biped robot starts with
the right foot located flat on the ground at/=0. The right foot rolls over the toes
during’ € (0,z,).

II). Swing-Phase(r e ... : The swing phase starts with the right foot just
about to leave the ground at r = »and then swings towards its new position.

III). Post-Swing-Phase (1 [t..t, +1,]): : At 1 =1, the foot touches the ground and
rolls around the heel durings € (.4, +1¢,). The one walking cycle ends at/ =1, +t,,

when theright foot is flat on the ground again.
We can easily produce different foot trajectories, by varyiing ilie vaiues of
constraint parameters g, (k),q,, (k). h,, (k),hge(k),qh,qj,Haa and L, in equation (1), )

and (3). For example,
I) if walking pattern of biped robot is on rough terrain, we can vary the values

ofg,, (k) 294 (k), hy (k) and h. (k) according to its ground conditions.

II) On level ground, 9o (k) =q, (k)= he (k) = h,(k)=0.

III) Over obstacles, we can vary the values of L, and Hm'according to the
obstacle. ‘

IV) On climbing stairs, x fe=Xp+2L .z, =z, +28,
where (x,,x . )and(z #sZg)aie initial and final position of one walking cycle and L_ is

step length and S, is stair height.

3.2. Hip Trajectory
The hip trajectory can be denoted by a vector

X, =lx0.2,a0.6,0)] .

where (x,(1),z,(¢)) denotes the coordinate of the hip position and 0,(t) denotes the
angle of the hip as shown in figure 6 and 7.

A complete walking process is compesed of three phases: a starting phase in
which the walking speed varies from zero to a desired constant velocity, a steady phase

with a desired constant velocity, an ending phase in which the walking speed varies from
a desired constant velocity to zero.

Letting x_,andx,, denote distances alon the x-axis from the hip io the ankie of
the support foot at the start and end of the single-support phase, respectively as shown in
figure 9. x,(¢) can be described by the double support phase and the single support

phase, during one-step cycle. We get the following equation

LS}
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) S t=0
x, (1) =1 D, -Xu> t="T,.
D, + Xy t=T,

27 2% 5. N
Fig.9. Walking cycle
Hip motion x,(f) hardly affects the position of the 7ZMP. By defining different

values for x and x,, tovary within a fixed range, in particular

0.0<x, <05D,
“4)

0.0<x, <0.5D;
Based on the trajectory of x;, (f) and (4) and the ZMP, a smooth trajectory with the
largest stability margin can be formulated as follows:
max  d, (X Xe )
x,, €(0,0.5D;), % € (0,0.5D,)
where d,,, (X5 Xea) denotes the stability margin.

)

Hip motion z,(f) to be constant, or to vary within a fixed range. Assuming that
H, .. be the hip highest position at the middle of the singie-suppui phiasc, and H,,..be
the hip lowest position at the middle of the double- support phase during one walking
step, z, (1) has the following constraints:

(H i > t=0.5T,
2, (t) = { Hymac> t=0.5(T, - Ty)
H i » t=T, +0.5T,

From the view point of the stability, hip motion parameter 6, (1) is constant when

there is no waist joint; in particular @, (1) = 0.5 rad on ievel ground.

3.3. Cubic polynomials for a path with via points

In one walking trajectory, the path is described in terms of number of points
greater than fwo. The points are 10 be satisfied more densely in those segments of the
paths where obstacles have to be avoided or a high path curvaturc is expected. Therefore.
the problem is to generate a trajectory when N points, termed path points, ar¢ specified
and have to be walked at certain instants of time. For each joint variable there are N
constraints, and then one might want 10 use (N-1) order polynomial. This choice,
however. has the following disadvantages: 1) it is not possible to assign the initial and
final velocities. 2) As the order of a polynomiial increases, its oscillatory behavior
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Increases, and this may lead to trajectories which are not natural for walking. 3)
Nllmerical accuracy for computation of polynomial coefficients decreases as order
increases. 4) Polynomial coefficients depend on all assign points; thus, if it is desired to
change a point, all of them to be recomputed.

| These drawbacks can be overcome if a suitable number of lower order
interpolating polynomials, continuous at the path points, are considered in place of single
high-order polynomials.

The interpolating polynomial of lowest order is the cubic polynomial, since it
allows imposing continuity of velocities at the path points. With reference to the single

sAaTnt  rramalla a  Fis Pt = ; ansnee  nf N.1 cuhie
JORU Varnaois, 2 Iuncucn q{!):s Scught, fcr_[ned b\J a gequence ot M-1 CU 2

polynomials I, (f)for k =1,...N —1, continuous with continuous first derivatives. The
functiong(r)attains  the values g for (=1 (k=1,...N), and ¢, =9,

t,=0,q9, =q,.1y =t,; theq, is represent the path points describing the desired

e et terr At e
dajeTioly at n'—a'k .

To do this, we need to specify the desired velocity at each via poinﬂL There are
several ways in which the desired velocity at via points must be satisfied: 1) the user
specifies arbitrary values of velocities at the path points. 2) The system automatically
chooses the velocities at the path points by applying a certain criterion. 3) The system
automatically chooses the velocities at the path poinis to cause the acceleration shall be
continuous. Then three methods corresponding to the above three data are described.

Method 1: Interpolating Polynomials with Velocity Constraints at Path Points

This solution requires the user to be able to specify the desired velocity at each

path poines; tie soiution dues 1oL puS>EsS aty novelly wiil espect o the above Concepis.
The system of equations allowing the computation of the coefficients N-1 cubic
polynomials interpolating the N path points is obtained by imposing the following

equations on the generic polynomials I1,(7) interpolating ¢, andg,.,, for &=1,....N-1:

i, )=gq,
nk(’hl):%u
,(r,)=4q,

.= Qi
The result is N —1system of four equations in the four unknown coefficients of
the generic polynomial: these can be solved one independently of the other. The initial
and final velocities of the trajectory are typically set to zero (¢, = ¢, = 0)and continuity
of velocity at the path points is ensured by setting

nk(lt+l)=nl+l(’k+l)

for k =1....N —2.In this method, the resulting discontinuity on the acceleration, since

only continuity of velocity is guaranteed. Therefore a convenient system should include
either method 2 or 3.
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Method 2: Interpolating Polynomials with Computed Velocities at Paih Voinis

In this case, the velocity at a path point has to be computed pocopding 1o o
certain criterion. Imagine via points connected with straight line segiments TEhe chope ol
these line changes sign al via points, choose zero velocity; il the slope of these hne dos
not change sign, choose the average ol the two slopes as the via velacity b this way
from specification of the desired via points alone, the system can chooses the velooiny w

cach points. By interpolating path points with linear segments, the relative velocitics cun
be computed according to the tollowing rules:

g, =0

) o0 sgn(v, ) #sgnlv, )

{l == iy . = “’)
vy vy ) osgndvy ) = senlv, )

‘)u =~ U'

, (9 —qiy) . : ' :
where v, = ~(—[——7-—) gives the slope of the segment in the time ||uu|’wﬁ 1ofy I Wil
k fr 3

the afbovc settings the determination ol the interpolating polynomials 15 reduced b (e
previous case. It is easy to recognize that the imposed sequence of path points leuds W
having zero velocity at the intermediate points.

N!ctpod 3: Interpolating Polynomials with Continuous accelerations at Puth Points
(Splines)

' 'l?o‘lh the above two solutions do not ensure continuity ol acceleration at (he path
points. I'his system chooses velocities in such a way that acceleration is continuous al via
puits. 1o do this, a new approach is needed. In this kind of spline, we replace the 1w
vcluf:nly constraints at the connection of two cubics with two constraints that velo iy be
continuous i conti The 1 i ati
w[iqﬁt:d'us and acceleration be continuous. The following equations have them w he

M) =4,

nt-l(’t )= nk(’g)
ﬁl—l(ri )= nt(’g)
ﬁi-l(’.\ )= ﬁi (1)

'] P 5 ; i oL
The resuiting system for 'N path points, including the initial and final path points
;annot‘bc_mlvcd. Henc:‘._* the introduction of the end point constraints implies llu.'
‘cler:lll:ja[.lon of N-1 cubic polynomials. According (o the end POINL constraint, we can
classified into various type of spline such as natural spli iodi - : '
3 $ al spline, periodic spline o Y
arif s o p periodic spline, elamp spline
'r"\nn Pera - ‘ " - = . i - %
. .'.....ul o Cutisuuct the mathematical model tor II'I\JCC[(][y I]Iilnlliﬂg on one W““““E’
ep ot : ! N, !
lbrpw ]lk.':ve ground by using the above three methods. Firstly, the values ol parsmete
‘A ¥ 3 - - v »
trajector mtf:b:mljl;'uofr)l’l are proposed in Table 1. Then, we bricfly described the oot
Reeiory ¢ following proposed program. The following derivative he
satisfied: E Ve st e




Y. (0)=0 2 (0)=0 0,(0) =0

X, 1. +7,)=0 ¢ (T +7,)=0 ()ﬂ(’l: +7,)=0

Table. 1. Proposed parameter for walking algorithm

(/)

paramelter vitlue
1 0.15%
'];” - .58
T ]09s
_ 2 Tem
L, 8em
' [;‘;’ 18cem
L. 24cm
H, lzem | o
a, Srad
q, ) Sldd— -
(i;))f using method i, we let the veiocity constraint for via points as the following equation
) v.\'d = v:d = Td‘ Jvavl I'= 7:!
_ Vi, t= f v t=T =T,
xa f) = 3 i m m 5 v( " [ = Im
( v =T o) v, r=T 9.(0) v‘ f = (8)
. Ver (=T, +T, Veerw 1=T,+T, Vau =T, 47T,
_ Finally, we get the solution for foot trajectory. |
[ 3
(—8.697l2+.15v,,) +(13.045-.15
> 5) ( Vr) (15" t €(0,.15)
o =]
(39302884 (v,, +v,,)(39))" = L 15895432 2, 4,y 35 =1
| N 35)° (35) 1€(.15,.5)
x,(0) = { TVt =15 +4.34856
[4330288+ (v, +v. ) 4)] ) +[6495432—(2v v )4y Y
i 2
N (4) 1€(.5,9)
(~8.69712+ 15, \( 1204 % (t-.9)°
xe/ _.____-L v \
(15 TU304568-3 I (Tap Thll=9+4565  1e(9105)
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; / " P
& (v A / () v ¥ ’/‘ /£ (”,I 7)
(=8.98064 |"a’",)‘ "'); F”“)!f".l? "1)(‘1”)1

, Ay =15
;lh.f)hmuv,,, f V,m)f, I)’ ("‘f,,’ I (l'b,‘!)

(=19
[ Odd (v, v 00 ] (,38)

v, 0 15 07K
..‘(f"‘ ! (f Iﬂ',i ) (, J&;)/
(40444 (v, 4 v, (A L i |-6.0664 (2, +v, )A)] (4) 16(5,9)
pv,, (1= .8)+12, |
0)' {=.9) |
(59504 lﬁ‘f'r‘)‘: |q f | ”‘r()’;[‘ .fh;m }‘( f -y, ([ _-.’()) “pe ‘).978, [ € (»9..’05)
15) 1
(=1 180 ) ot (1,8 = 18y )L 1€(0,15)
Y18y ")
”'(”,. !
' 2

9y’ - .
[~ 1.004 4 .l.’iv,,|”( I‘S)z +11.506 - v, 1.(_’.=. ;5 v, (1=.9)42.64 1€(.9].05)

By using method 2, we get the solution for foot trajectory by cubic polynomial.
6782569016 1" + 294 419347517, { €(0,.15)
IF‘).(,ISII1*.)(> (1 ~.15)" + 80.840666866 (1 ~.15)" (e (15.5)
42 54346338 (1 ~ . 15)4 4.335318275 ,
X AN w4 = T72.61400594 (1~ .5)" + 26.51672663 (1 - .5)°
5517325463 (1 —.5) + 24,
723.2113895 (1 -.9)" + 2428359511 (1 - .9)?
b 41.53191307 (1 ~.9) + 45.6646873 ,

re(.5.7)

re(.9,1.05)

~ 1195 401336 ¢" +311.6899213 (* + 7, 1€ (0,15)
10.3144554 (1 - .15)" = 23.72230412 (1 - .15)?
re(.15,.5)

silyml * 12.81615665 (1 =.15)+ 9.9782242 ,
X = 14.66432713 (1 =.5)" = 6.7703676 (1 - .5)* +12, 1€ (.5,.9)
1211310420 (¢ - .9)"  231.0276088 (/ - .9)?

= 1245517134 (1 - .9) + 9.9782242 |
= 22222296296 1" + 55.55566667 1?2, te(0,15)

e (.9,1.05)

(),,(r)-wq N
<22.222963 (1 - .9)"  44.44466667 (1 - .9)* tc(91.05)

= 1660665 (1~ .9) + .5,

10
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186.4047223

By using method 3. we get the foot trajectory by cubic spline interpolation.
' : 1% +24,70801558 1, re(0.15)
| —85.42263817 (1 —.15)° + 83.88212505 (1 —.15)°

re(.15.5)

|+37.29033434 (r —.15)+ 4.3335318275 ,

i
|

TR A B et a oy

9‘(1):?I

f

|—2.9408824 1 + 5.

¥ (1) =4 —50.80400006 (1 —.5)" —5.811645025 (1 - .5)*

{ +64.61500235 (1 —.5) + 24,

| 148.3921002 (r-.9)° - 66.7764451 (1 —.9)’
+35.57976631 (1 —.9) + 45.666468173 ,

" —92.88998202 1’ + 21.94657288 1 + 7, 1€ (0,15)
38.60765798 (1 —.15)° — 41.80049191 (1 —.15)?

|+ .56044650609 (1—.3)+12,
88.69349747 (1 -.9)° — 39.91207386 (1 - .9)*
L —15.86534089 (1 —.9) +9.978482242 .

[ —8.71372548 1° + 3.529058824 1, re(0,.15)

re(.5.9)

1€(.91.05)

re(.15.5)

+15.67649909 (1 —.15) + 9.978482242 ,
z, (1) ={ —32.20801903 (1 - .5)* —1.262451029 (1 —.5)’

¢~ f
< 4

4

3

1e(.9.1.03)

0
-7

8.71372549 (r-.9)° —-3.921176471 (1-.9)? re (.9.1.05)

By using matlab program, the two result trajectory of method 2 and 3
1s demonstrated as shown in ficure 1011 and 12
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Fig.10.graph forx,(r). dot line method 2,
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* STMsgilnl:rleTa‘l biped robot inherently suffers from instability a lways risks fui!mg
down. ensuring stability is the most important goal from the perspeetive of ]u_(:gmollon.
There are two ;)'pes ofétabilizy motion such as static stability and d_\;'ﬂZJIHIC slfib:lny. g
Static stable locomotion js characterized by the center of mass ((_OM) ‘-‘f‘ 5:-‘3
machine being within the stable region, which is the convex hull COHS!‘SU‘"g .Of ”5_
SUppotiing feet. Ihe projection of CoM on the ground is called the ground projection of
CoM (GCoM). Dynamic stable locomotion Is can be implemented by maintaining the

Zero moment point (ZMP) inside the stable region. If ZMP outside the support the
polygon. it is called Foot rotation indicator (FRI).

4.1 Conditious for Contact Stability
An important feature of all forms of walking is, that phy

foot and the ground are unilateral [5]. Stability of the contact situation during the three
walking phases defined in Sec. 3 i 1 '

with the contact stability conditions summarized next The sum of ali forces on a contact
suriace s ihereby represented by the resultant contact forces F =[FJ,Fl.F_]Iand
moments M =[M .M, M. ] acting in the points r, (Cartesian coord
Ty (Cartesian coordinates of right le

inates of left leg),
g on the pre swing phase),
of right leg on the

w (Cartesian coordinates
post swing phase), depending on the oy

o fiCiit waiking phase, (see figure
D
left foot : right foot
o . 2y - E
.4._.. bz ; ‘I\\Q‘i;i Ry f.’a_-f i g
] i re [;]
H 4 e
f _.Ejj;il'h me_ L) ram 3"
B fape tmpy =0 Irpa. g S, opu, — 0 o A,
(a)

() (c)

Fig.13. Contact Constraints and forces during wallkine -1

: _ . “HiE pirases (a) supporting left foot (b
PIe-SWing phase (right foot) (c) POst-swing phage (right foot) : "

12



Usilateraiiiy Condirtions on the resultant normal contact forces ensure, that a desired

contact situation does not change by a foot lifting off the ground:
Fi.20, VielOq +1,]
Fy .20, Yiel0,,)
D20, Yeeft g, +t,).
ZMP Conditions are used in this work to prevent a foot from beginning to rotate around

its cdges. The ZMP is defined as the point on the contact surface, where the resultant
momentsa, ; n, of all contact forces are zero. The contact situation js stable, if the ZMP

remains inside the contact area.

1} 7] ’m,

=0}

feasible teguus
(]
i
!

for
“es, I
] | )

|
g

<

l__-',iy

| -

e D B
[

]

!

-~

w

i
-— H

&

i

Fig. 14. Three walking phases I) pre-swing phase, I1) swing phase, III) post-swing phase
and feasible regions for ZMP, top view

With the resultant contact forces sketched in Figurel4 the ZMP of the left foot
denoted by (X, ,mpand Yi.am)» Which should remain flat on the ground duiing aii three

o

-
—— e e

i

phases, can be expressed in the left foot frame L as
M!.,y ML,x .

X =— =

L.zmp » ? yl.,zmp
F, F,
The following constraints result from the area of valid ZMP  pesitions

Yrel0,:, t2,}: llusirated in Fig. 14.

-

I, < I.J‘is/d ,—IVS*A/I—“S[
i i 7

where [ is length of foot along y axis.

As the right foot rotates around its front (back) edge during pre-swing [ (post-
swing II1) there is no resultant moment M ,and the contact surface degenerates to a line.

¥

The ZMP of right foot (denoted byxk‘z,,,p, Yiamp) moves along this line while its
coordinates in frame R are given by

M."fj‘ :
-yR,zmp = F : » xR.ZITIP =[-If’ V{E[O,Id)
.z




g

RS

<

M Vel g, vyl

Y znp = 7 Yr,
Ff\'"' .

anp - ab?

where [ is length of angle joint to the toe along x-wxis and /1% length of angle jonn 14

the heel along X-axis. .
Considering the areas designated in Fig. 14 now leads W the constimnis

"'Mm.

-1, € b &1 YieelOd,)
E I
L (1 2N -
-M,, .
1 s —2rcl,  ViEltd, +1y)
' Fn - .

which ensure that the front (back) edge of the right foot remuins flat on the ground

Friction Conditions ensure that a supporting foot neither beging (o ship on the ground
nor starts to rotate around the normal axis ¢ of the contact surlice J b peatibiai
tangential forces [, and the resultant moments M cannot be lu-mo‘thwmlumly,

because their effects combine. Thus the {riction condition

P *‘lﬂ_ﬂs pF, )

is applied, which has to be satisfied by the resultant contact forces /7, of the feft fool
during all three phases, by 7, at the right foot during pre s wing [, and by [, during
Post-Swing I11. The first term in (9) defines the usual friction cone, while the second % an
additional tangentai force induced by the moment M, The constant 0« g < ) denotes
the friction coefficient of the rubbing surfaces and k is the frictional radius, The assumed
frictional radius for the left foot is A, =().5J(21’},)’ +(l,, +1,)" and for the right fool

ky =k =1, during both pre-swing phase and post-swing phasc,

4.2 Bounds on the joint angles and on the control torques

Physical admissibility of the walking phases also demands compliance with
restrictions given by the performance limits of joint angle, joint velocity and torques,
This is regarded by the inequality constraints

Hmin S gu) = gnmx
6., <0)<0,,,t=[o1, +1,]
Tuliu < T(’) < rmnx

where @ is the joint angle, @ is the joint velocity and 7 is the joint torques.

CONCLUSION

The result represented in this paper demonstrate that dynamically stable,
physically feasible and naturally looking walking phase can  be generated by
mathematical modeling using cubic polynomial, cubic spline interpolation and applicd

14
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mechanics. Future work will be considered the method for Wajeciory planning and
concept of stability criteria points (CoM, GCoM. ZMP and FRI),
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